
BUNCH TRANSVERSE EMITTANCE INCREASES IN
ELECTRON STORAGE RINGS
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Abstract

In this paper a theoretical framework to estimate the
bunch transverse emittance grow up in electron storage
rings due to short range transverse wakefield of the ma-
chine is established. The new equilibrium emittance equa-
tions are derived and applied to explain the experimentally
obtained results in ATF damping ring.

INTRODUCTION

Required by the future e+e− linear colliders, damping
rings are needed to provide the main linacs with extremely
small transverse emittance beams. In an electron storage
ring, it is observed that with the increasing bunch current
not only a bunch suffers from bunch lengthening, increase
in energy spread, but also transverse emittance growth. The
usual explanation to the transverse emittance grow up is
based on the intrabeam scattering theory [1][2][3] which
has its origin from H. Bruck’s idea [4]. Comparison of the
emittance grow up between experimental results and those
from intrabeam scattering theory shows, however, that in
the vertical plane the agreement is not satisfactory [5][6].
In this paper we will draw attention to another important
physical cause for the transverse emittance grow up in ad-
dition to the intrabeam scattering, i.e. the short range trans-
verse wakefield of the machine.

EQUATION OF TRANSVERSE MOTION

The differential equation of the transverse motion of a
bunch with zero transverse dimension is expressed as

d2y(s, z)
ds2

+
2

τyc

dy(s, z)
ds

+ k(s, z)2y(s, z)

=
1

m0c2γ(s, z)
e2NeW⊥,y(s, z)Y (s, z) (1)

wherey(s, z) is the particle’s transverse deviation from the
closed orbit,s is the longitudinal coordinate of the particle
located at the center of a bunch,z denotes a particle’s longi-
tudinal position inside the bunch with respect to the bunch
center,k(s, z) describes the linear lattice focusing strength,
W⊥,y(s, z) =

∫ ∞
z

ρ(z′)W⊥,y(s, z′ − z)dz′, W⊥,y(s, z) is
the point charge wakefield, the bunch line charge density
ρ(z) is normalized as

∫ ∞
−∞ ρ(z′)dz′ = 1, c is the velocity

of light, τy is the synchrotron radiation damping time in
transversey direction,m0 is the rest mass of the electron,e
is the electron charge, andY (s, z) is the deviation between
particles and the geometric center of vacuum chamber. Due
to synchrotron radiation effect, one can treat the particles in
a bunch on the same footing by multiplyingρ(z) on both

sides of eq: 1 and make the integration from−∞ to∞ over
z. Consequently, one gets

d2y(s)
ds2

+ Γ
dy(s)
ds

+ k(s)2y(s) = Λ (2)

where Γ = 2
τyc , Λ = e2Nek⊥,y(σz)Y (s)

m0c2γls
,

ls is the circumference of the storage ring,

k⊥,y(σz) =
∫ ls
0

{
∫ ∞
−∞ ρ(z)W⊥,y(s, z) dz

}

ds, and

ρ(z) = 1√
2πσz

e
− z2

2σ2
z . Y (s) is a random variable due

to vacuum chamber misalignment error and close orbit
distortion with< Y (s) >= 0 (< > denotes the average
overs). Eq. 2 can be regarded as Langevin equation which
governs the Brownian motion of a molecule.

To make an analogy between the movement of the trans-
verse motion of an electron and that of a molecule, we de-
fine P = e2Nek⊥,y(σz)

m0c2γ , and regardY (s)P as the particle’s

”velocity” random increment (∆dy
ds ) over the distancels.

We assume that the random variableY (s) follows Gaus-
sian distribution:

f(Y (s)) =
1√

2πσY

exp
(

−Y (s)2

2σ2
Y

)

(3)

and the velocity (u) distribution of the molecule follows
Maxwellian distribution:

g(u) =
√

m

2πkT
exp

(

−mu2

2kT

)

(4)

wherem is the molecule’s mass,k is the Boltzmann con-
stant, andT is the absolute temperature. The fact that the
molecule’s velocity follows Maxwellian distribution per-
mits us to get the distribution function forΛls [7]:

φ(Λls) =
1√

4πqls
exp

(

−Λ2l2s
4qls

)

(5)

where

q = Γ
kT

m
(6)

By comparing eq. 5 with eq. 3, one gets:

2σ2
Y =

4qls
P 2

(7)

or
kT

m
=

σ2
Y P 2

2lsΓ
(8)

Till now one can use all the analytical solutions concerning
the random motion of a molecule governed by eq. 2 by a



simple substitution described in eq. 8. Under the condition,
k2(s) >> Γ2

4 (adiabatic condition), one gets [7]:

< y2 >=
kT

mk2(s)
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y2
0 − kT

mk2(s)

)

×
(

cos(k1s) +
Γ

2k1
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)2

exp(−Γs)

=
σ2

Y τy

4T0k2(s)

(
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m0c2γ

)2

+
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y2
0 − σ2

Y τy
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(
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m0c2γ

)2
)

×
(

cos(k1s) +
Γ

2k1
sin(k1s)

)2

exp(−Γs) (9)
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kT

m
+

k(s)
k2
1

(

y2
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mk2(s)

)

sin2(k1s) exp(−Γs)

=
σ2

Y τy
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)2

+
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k2
1

(

y2
0 − σ2

Y τy

4T0k2(s)

(
e2Neky(σz)

m0c2γ
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× sin2(k1s) exp(−Γs) (10)

< yy′ >=
k(s)2
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×
(

kT

mk(s)2
− y2

0

)(
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Γ

2k1
sin(k1s)

)

exp(−Γs)
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k(s)2

k1

(
σ2

Y τy

4T0k2(s)

(
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− y2
0
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2k1
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wherek1 =
√

k(s)2 − 1
4Γ2. The asymptotical values for

< y2 >, < y′2 >, and< yy′ > ass → ∞ are easily
obtained:

< y2 >=
kT

mk2(s)
=

σ2
Y τy

4T0k2(s)

(
e2Nek⊥,y(σz)

m0c2γ

)2

(12)

< y′2 >= k2(s) < y2 >=
σ2

Y τy

4T0

(
e2Nek⊥,y(σz)

m0c2γ

)2

(13)
< yy′ >= 0 (14)

Inserting eqs. 12, 13, and 14 into the definitions of the
r.m.s. emittance shown in eq. 15:

εw,y =
(
< y2 >< y′2 > − < yy′ >2

)1/2
(15)

one gets

εw,y =
σ2

Y τy

4T0k(s)

(
e2Nek⊥,y(σz)

m0c2γ

)2

(16)

or

εw,y =
σ2

Y τy < βy(s) >

4T0

(
e2Nek⊥,y(σz)

m0c2γ

)2

(17)

where< βy(s) > is the average beta function of the ma-
chine iny plane. Before going on further, we have to re-
mind the reader that at the beginning of this section it is
assumed that the bunch has zero transverse dimension (the
bunch is represented as a soft line), in reality, however, a
bunch has finite transverse dimension. A particle inside the
bunch can move like a molecule in a gas due to quantum
effect of synchrotron radiation. In electron storage rings,
the “banana” shape of the bunch cannot be sustained due
to “mixing”, quite different from what happens in a linac
and a hadron storage ring where there is no, or little, syn-
chrotron radiations. Mathematically to take this fact into
account, one can rewrite eq. 17 as follows

εw,y =
σ2

Y τy < βy(s) >

4T0R3
ε,y

(
e2Nek⊥,y(σz)

m0c2γ

)2

(18)

whereRε,y = εtotal,y/ε0,y, εtotal,y is the final emittance
at a given bunch populationNe, ε0,y is the emittance zero
current, and the cubic functional dependence onRε,y can
be regarded as an Ansatz. Finally, we find the expression
for the emittance of a bunch corresponding to a given bunch
population

εtotal,y = ε0,y + εw,y

= ε0,y +
σ2

Y τy < βy(s) >

4T0

(
e2Nek⊥,y(σz)

m0c2γ

)2

(19)

If we distinguish now the horizontal plane denoted by the
subscriptx and the vertical plane denoted by the subscript
y, one gets the two emittance equations

Rε,x =
εtotal,x

ε0,x

= 1 +
σ2

Xτx < βx(s) >

4T0ε0,xR3
ε,x

(
e2Nek⊥,x(σz0)

m0c2γRΘ
z

)2

(20)

Rε,y =
εtotal,y

ε0,y

= 1 +
σ2

Y τy < βy(s) >

4T0ε0,yR3
ε,y

(
e2Nek⊥,y(σz0)

m0c2γRΘ
z

)2

(21)

where σz0 is the bunch length of zero current,Rz =
σz/σz0, andΘ = 0.7, which corresponds to SPEAR scal-
ing for transverse loss factor [8]. SinceRz is also a func-
tion of Ne, it is obvious that one can start to solve eqs. 20
and 21 only whenRz(Ne) has been solved from the bunch
lengthening equation [9].



APPLICATION TO THE ANALYSIS OF
ATF DAMPING RING EXPERIEMTAL

RESULTS

ATF damping ring is a machine dedicated for the feasi-
bility studies of future e+e− linear colliders [10]. In this
section, by applying our theory established above and ne-
glecting intrabeam scattering effects, we try to explain the
ATF damping ring experimental results [6] with the follow-
ing machine parameters:E0 = 1.3 GeV, < βx >= 4.2
m, < βy >= 4.6 m, τx = 18.2 ms, τy = 29.2 ms,
εx0 = 1.1×10−9 mrad,εy0 = 5.8×10−11 mrad, and the in-
formation about the bunch lengthening with respect toNe

can be obtained either from experimental results [11][12]
or from analytical results [9]. Assumingk⊥,x(σz0) =
k⊥,y(σz0)=1020 V/pC/m, forσX = 0.42 mm andσY =
0.163 mm, by using eqs. 20 and 21 one fits the experimen-
tally measured emittance grow ups vs the bunch popula-
tion as illustrated in Figs. 1 and 2, where the experimen-
tal results correspond to the values denoted in ref. [6] as
“Wire scanner 2001/2/8”. It is seen clearly that both the
horizontal and vertical emittances’ functional dependences
on the bunch population fit well with the experimental re-
sults. We stress thatσ2

X,Y = σ2
x,y,chamber +σ2

x,y,co, where
σx,y,chamber are the vacuum chamber misalignment errors
andσx,y,co are the closed orbit distortion errors. It is ob-
vious that to avoid excessive emittance grow ups, both the
closed orbit distortions and the vacuum chamber misalign-
ment errors should be under careful controlls with the same
rigour.

To check further the validity of this theory one has to
do more experiments by varyingσX,Y and to have more
accurate values fork⊥,x(σz0) andk⊥,y(σz0).
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Figure 1: Horizontal emittance vs bunch population. The
dots and solid line correspond to the experimental and the-
oretical values, respectively.
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Figure 2: Vertical emittance vs bunch population. The dots
and solid line correspond to the experimental and theoreti-
cal values, respectively.

CONCLUSION

In this paper we have established a theoretical frame-
work to explain the bunch transverse emittance growth vs
the bunch population in an electron storage ring. The new
equilibrium emittance equations are given and applied to
explain the experimental results from the ATF damping
ring. More quantitative works need to be done in the fu-
ture.
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